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2008 Steele Prizes

The 2008 Leroy P. Steele Prizes were awarded at 
the 114th Annual Meeting of the AMS in San Diego 
in January 2008.

The Steele Prizes were established in 1970 in 
honor of George David Birkhoff, William Fogg 
Osgood, and William Caspar Graustein. Osgood 
was president of the AMS during 1905–1906, and 
Birkhoff served in that capacity during 1925–1926. 
The prizes are endowed under the terms of a 
bequest from Leroy P. Steele. Up to three prizes 
are awarded each year in the following catego-
ries: (1) Lifetime Achievement: for the cumulative 
influence of the total mathematical work of the 
recipient, high level of research over a period of 
time, particular influence on the development of a 
field, and influence on mathematics through Ph.D. 
students; (2) Mathematical Exposition: for a book 
or substantial survey or expository research paper; 
(3) Seminal Contribution to Research: for a paper, 
whether recent or not, that has proved to be of 
fundamental or lasting importance in its field or 
a model of important research. Each Steele Prize 
carries a cash award of US$5,000.

The Steele Prizes are awarded by the AMS Coun-
cil acting on the recommendation of a selection 
committee. For the 2008 prizes the members of the 
selection committee were: Rodrigo Bañuelos, En-
rico Bombieri, Russel Caflisch, Lawrence C. Evans, 
Lisa C. Jeffrey, Nicholas M. Katz, Julius L. Shaneson, 
Richard P. Stanley, and David A. Vogan (chair).

The list of previous recipients of the Steele Prize 
may be found on the AMS website at http://www.
ams.org/prizes-awards.

The 2008 Steele Prizes were awarded to Neil 
Trudinger for Mathematical Exposition, to Endre 
Szemerédi for a Seminal Contribution to Research, 
and to George Lusztig for Lifetime Achievement. 
The text that follows presents, for each awardee, 
the selection committee’s citation, a brief bio-
graphical sketch, and the awardee’s response upon 
receiving the prize.

Mathematical Exposition: Neil Trudinger

Citation
The Leroy P. Steele Prize for Mathematical Exposi-
tion is awarded to Neil Trudinger in recognition 
of his book Elliptic Partial Differential Equations 
of Second Order, written with the late David Gil-
barg.

The global theory 
of nonlinear partial 
differential equations 
was mostly restricted 
to PDE involving two 
variables until the late 
1950s, when funda-
mental estimates of 
DeGiorgi and Nash for 
second-order elliptic 
(and parabolic) equa-
tions finally broke 
open such PDE in more 
variables. The subject 
thereupon exploded 
beyond all expecta-

tions, and nowadays the analysis of even extremely 
degenerate and highly nonlinear second-order 
elliptic PDE in many variables is fairly routine, if 
very technical in detail.

Neil Trudinger, starting with the original 1977 
edition of his book with Gilbarg, has recorded the 
progress of the field. He has reworked the break-
throughs, many due to him, recasting these tech-
nical estimates into understandable form within 
the fixed notation and framework of this highly 
cited book in its various domestic and foreign edi-
tions. His service has been invaluable. Having this 
foundational reference has made it possible for 
young researchers to enter the field, which would 
otherwise have been impenetrable. Here they can 
read in full detail all about Schauder estimates, 
Sobolev spaces, boundary estimates, Harnack in-
equalities, a priori derivative bounds, and much, 
much more.

Good mathematical exposition is always diffi-
cult, but it is especially so for technical estimates. 
The heights to which the research community has 
pushed the analysis of nonlinear second-order 
elliptic PDE is amazing, but the fundamental in-
equalities are mostly without any good heuristic in-
terpretations. Hard analysis is both hard and hard 
to explain: Neil Trudinger’s concise, elegant exposi-
tion in this outstanding book is magnificent.
Biographical Sketch
Neil S. Trudinger was born in Ballarat, Australia, in 
1942. After schooling and undergraduate education 
at the University of New England in Australia, he 
completed his Ph.D. at Stanford University in 1966. 
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Following appointments at the Courant Institute 
(1966–67); University of Pisa, Italy (1967); Mac-
quarie University, Australia (1968–70); University 
of Queensland, Australia (1970–73); University 
of Minnesota (1970–71); and Stanford University 
(1971), he took up a chair of mathematics at the 
Australian National University in 1973, where he 
has been since. During this period he has also held 
numerous visiting positions at universities in Asia, 
Europe, and the United States, as well as a profes-
sorship at Northwestern University from 1989 to 
1993. Among various administrative positions at 
the Australian National University, he was head of 
the Department of Pure Mathematics from 1973 
to 1980, director of the Commonwealth Special 
Research Centre for Mathematical Analysis from 
1982 to 1990, and dean of the School of Mathemati-
cal Sciences from 1992 to 2000.

Neil Trudinger is a fellow of the Australian 
Academy of Science and a fellow of the Royal 
Society of London. He was also chief judge in the 
Singapore National Science Talent Search in 2002. 
His research contributions, while largely focused 
on nonlinear elliptic partial differential equa-
tions, have also spread into functional analysis, 
geometry, computational mathematics, and, more 
recently, optimal transportation.
Response
I am very honoured and pleased to receive the 
Steele Prize for Mathematical Exposition. I could 
never have imagined forty years ago when my book 
with David Gilbarg on elliptic partial differential 
equations was first published that it would get 
such recognition. The book was originally con-
ceived by us after I had prepared lecture notes for 
the spring quarter of the graduate PDE course at 
Stanford in 1971. My topics were Sobolev spaces 
and their application to linear elliptic PDE, and 
we decided to start by blending these with earlier 
notes of Dave on the Schauder theory. Six years 
later and after a lot of hard work, including long 
and painful negotiations over language, the first 
edition appeared. We were extremely fortunate to 
have incredible assistance. First was the impec-
cable typing of Anna Zalucki in Canberra and 
Isolde Field at Stanford. Isolde had already typed 
my Ph.D. thesis at Stanford several years earlier, 
and Dave had been my supervisor, so the Stanford 
team was ready to roll from the outset. In Austra-
lia I had an amazing research assistant, Andrew 
Geue, who checked every bibliographical reference 
against its original publication so that titles and 
page numbers were always correct. We also got 
plenty of encouragement and support from many 
colleagues over the succeeding years to whom I 
am very grateful, as well as to those old friends 
Catriona Byrne and Joachim Heinze at Springer in 
Heidelberg.

My own passage into mathematical exposition 
was rather severe, akin to learning to swim by 

being thrown in a deep ocean. My first postdoctoral 
position in 1966 was a Courant Instructorship, and 
I was assigned an advanced topics course in PDE 
for the full year. Armed with books by Bers, John, 
and Schechter on partial differential equations; 
Morrey on multiple integrals in the calculus of 
variations; Friedman on parabolic partial differen-
tial equations; as well as works of Ladyzhenskaya 
and Ural’tseva, Moser, Serrin, and Stampacchia 
from my graduate days, I struggled to teach a 
full-year course on elliptic and parabolic equations 
to students who all looked older than my meagre 
twenty-four years. But this torture had its rewards. 
I presented a then recent and now famous paper 
by John and Nirenberg on BMO as it was needed 
for the Moser Harnack inequality. Subsequently, I 
found that it could be bypassed for the Harnack 
inequality through a simpler argument, a byprod-
uct of which was an exponential-type imbedding 
result, later sharpened by Moser and now well 
known as the Moser-Trudinger inequality. At the 
same time, my quest to understand loss of com-
pactness in Sobolev imbeddings led to the Yamabe 
“problem”. But most of all I was extremely well 
equipped when I started work on the book a few 
years later.

I conclude on a sad note. Both David Gilbarg 
and Isolde Field passed away in recent years. This 
honour is for you, Dave and Isolde!

Seminal Contribution to Research: Endre 
Szemerédi

Citation
The Steele Prize in 2008 for a Seminal Contribu-
tion to Mathematical Research is awarded to Endre 
Szemerédi for the paper “On sets of integers con-
taining no k elements in arithmetic progression”, 
Acta Arithmetica XXVII (1975), 199–245.

A famous result of arithmetic combinatorics 
due to van der Waerden in 1927 proving an earlier 
conjecture of Baudet states that if we partition 
the natural integers into finitely many subsets, 
then one of these subsets contains arithmetic 
progressions of arbitrary length. In its finite ver-
sion, because of the inevitable use of a multiple 
induction argument, it leads to incredibly large 
bounds for the size of a set of consecutive integers 
such that for every k-partition of it there is always 
a subset containing an arithmetic progression of 
k terms. In 1936 Erdős and Turán proposed, as a 
natural extension of van der Waerden’s theorem, 
the conjecture that any infinite set of integers of 
positive density contained arbitrarily long arithme-
tic progressions; this may be viewed as a discrete 
analog of the classical theorem of Lebesgue that 
almost every point of a set of positive measure 
of real numbers has density 1. This conjecture 
quickly became one of the major open questions 
in Ramsey theory.
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The first nontrivial 
result about the Erdős-
Turán conjecture was 
obtained by K. F. Roth 
in 1953 using harmonic 
analysis, proving it for 
progressions of length 
3, but his method did 
not extend to length 
4 in any obvious way. 
In 1969 Szemerédi 
proved the Erdő s-
Turán conjecture for 
length 4 using a dif-
ficult combinatorial 
method. Finally, the 

Erdős-Turán conjecture was settled in the affirma-
tive by Szemerédi in his landmark 1975 paper.

The solution is a true masterpiece of combi-
natorics, containing new ideas and tools whose 
impact go well beyond helping to solve a specific 
hard problem. One of these new tools, his by now 
famous Regularity Lemma, has become a founda-
tion of modern combinatorics. Its statement of 
striking simplicity asserts roughly that any suf-
ficiently large dense graph can be approximated 
by a union of a bounded number of very regular 
subgraphs of almost equal size, looking in pairs 
like very regular bipartite graphs; the upper and 
lower bounds for the number of subgraphs are 
determined only by the desired quality of ap-
proximation and are independent of the size of 
the graph. In essence, every large dense graph is 
well approximated by a controlled bounded union 
of quasirandom bipartite graphs of almost equal 
size. This is a very surprising result, far from in-
tuitive. The proof is short but very subtle, leading 
to bounds for the number of components larger 
than any tower of exponentials. The subtlety of the 
statement has been confirmed by recent work by 
Gowers, showing that these gigantic bounds are 
indeed necessary for the validity of the Regularity 
Lemma in all cases.

The impact in combinatorics of the Regularity 
Lemma and of the numerous variants that followed 
it is due to the fact that there are many techniques 
available for studying random graphs and, via the 
Regularity Lemma, they can be transferred to the 
study of completely arbitrary graphs. It is fair to 
say that the Regularity Lemma has transformed 
the focus of graph theory from the study of special 
graphs and of extremal problems to the study of 
general graphs and random graphs. Beyond com-
binatorics it has found applications in number 
theory and in computer science, in particular in 
complexity theory.

However, the impact of Szemerédi’s paper goes 
beyond this. The solution of the Erdős-Turán 
conjecture stimulated other mathematicians to 
find other lines of attack. In 1977 Furstenberg 

found a new proof of Szemerédi’s theorem using 
deep methods of ergodic theory, together with a 
correspondence principle showing the equivalence 
of Szemerédi’s theorem with his new ergodic theo-
rem. Furstenberg’s new method could then be used 
to attack multidimensional versions of the theorem 
as well as nonlinear versions. In 2001 Gowers ob-
tained a new proof of Szemerédi’s theorem, based 
on his novel idea of a Fourier analysis with non-
linear phases. More recently, Green and Tao were 
able to replace the positive density condition in 
Szemerédi’s theorem by other arithmetical condi-
tions, which allowed them, using again a suitable 
transference principle, to prove the same result 
for any sequence of primes of relative positive 
density, thereby solving another famous conjec-
ture of Erdős considered inaccessible by standard 
methods of analytic number theory.

Recent work by many authors strongly indicates 
that these different approaches to Szemerédi’s 
theorem are all interrelated. There is no doubt that 
Szemerédi’s landmark paper is the source of these 
beautiful developments in mathematics.
Biographical Sketch
Endre Szemerédi was born in Budapest in 1940. He 
finished university in Budapest, at ELTE University. 
He received his Ph.D. at the Moscow State Univer-
sity. He has been a member of the Renyi Institute 
of the Hungarian Academy of Sciences since 1970. 
Currently he is a professor in the Department of 
Computer Sciences, Rutgers University. He is a 
member of the Hungarian Academy of Sciences. 
In 1976 he received the Pólya Prize.
Response
I am really grateful to the AMS, to the Steele Prize 
Committee, and to those people who recom-
mended me. This prize is a great honor.

Here is what actually sparked my work on R4​(n​). 
Assuming that it was a well-known fact that dense 
sets of integers have arithmetic progressions of 
length four, I proudly showed Paul Erdős a proof 
that no positive fraction of elements in a long 
arithmetic progression could be squares. Erdős 
pointed out a flaw in the argument, namely that 
R4​(n​) was actually an open problem and that the 
rest of my proof was in fact already known to 
Euler. So now I really had to work on R4​(n​). Once 
R4​(n​) was settled, so was the original problem 
about squares. Later, Bombieri, Granville, and 
Pintz greatly improved my result. Luckily for me 
this occurred several years after R4​(n​); otherwise 
I would never have worked on it.

It is my opinion (and maybe only mine) that the 
Regularity Lemma was born after the Rk​(n​) result, 
though certainly inspired by ideas from that paper. 
It is necessary to acknowledge Andras Hajnal for 
the Rk​(n​) paper and Vasek Chvatal for the Regu-
larity Lemma paper. These friends literally wrote 
every word of the papers based on my explana-
tions. I also want to express my gratitude to Paul 

Endre Szemerédi
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Erdős and to K. F. Roth for their encouragement 
to persevere with Rk​(n​).

This award could not have occurred were it not 
for the fundamental work of other mathematicians 
who developed the field of additive combinator-
ics and established its relations with many other 
areas. Without them my theorem is only a fairly 
strong result, but no “seminal contribution to re-
search”. I acknowledge my debt to them. Finally, I 
want to thank my wife, Anna, for all her patience, 
good humor, and support.

Lifetime Achievement: George Lusztig

Citation
The work of George Lusztig has entirely reshaped 
representation theory and in the process changed 
much of mathematics.

Here is how representation theory looked be-
fore Lusztig entered the field in 1973. A central 
goal of the subject is to describe the irreducible 
representations of a group. The case of reductive 
groups over locally compact fields is classically 
one of the most difficult and important parts. 
There were three more or less separate subjects, 
corresponding to groups over R (Lie groups), Qp​ 
(p​-adic groups), and finite fields (finite Chevalley 
groups).

Lusztig’s first great contribution was to the 
representation theory of groups over finite fields. 
In a 1974 book he showed how to construct “stan-
dard” representations—the building blocks of 
the theory—in the case of general linear groups. 
Then, working with Deligne, he defined standard 
representations for all finite Chevalley groups. This 
was mathematics that had been studied for nearly 
a hundred years; Lusztig and Deligne did more in 
one paper than everything that had gone before.

With the standard representations in hand (in 
the finite field case), Lusztig turned to describ-
ing irreducible representations. The first step is 
simply to get a list of irreducible representations. 
This he did almost immediately for the “classical 
groups”, like the orthogonal groups over a finite 
field. The general case required deep new ideas 
about connections among three topics: irreducible 
representations of reductive groups, the represen-
tations of the Weyl group, and the geometry of the 
unipotent cone. Although some key results were 
contributed by other (great!) mathematicians like 
T. Springer, the deepest new ideas about these con-
nections came from Lusztig, sometimes in work 
with Kazhdan.

Lusztig’s results allowed him to translate the 
problem of describing irreducible representations 
of a finite Chevalley group into a problem about 
the Weyl group. This allowed results about the 
symmetric group (like the Robinson-Schensted 
algorithm and the character theory of Frobenius 
and Schur) to be translated into descriptions of the 

irreducible represen-
tations of finite clas-
sical groups. For the 
exceptional groups, 
Lusztig was asking 
an entirely new fam-
ily of questions about 
the Weyl groups, and 
considerable insight 
was needed to arrive at 
complete answers, but 
eventually he did so.

Lusztig’s new ques-
t ions about  Weyl 
groups originate in 

his 1979 paper with Kazhdan. The little that was 
known about irreducible representations first be-
comes badly behaved in some very specific exam-
ples in S​L(4,​C). Kazhdan and Lusztig noticed that 
their new questions about Weyl groups first had 
nontrivial answers in exactly these same examples 
(for the symmetric group on four letters). In an 
incredible leap of imagination, they conjectured a 
complete and detailed description of singular irre-
ducible representations (for reductive groups over 
the complex numbers) in terms of their new ideas 
about Weyl groups. This (in its earliest incarnation) 
is the Kazhdan-Lusztig conjecture. The first half of 
the proof was given by Kazhdan and Lusztig them-
selves, and the second half by Beilinson-Bernstein 
and Brylinski-Kashiwara independently.

The structure of the proof is now a paradigm 
for representation theory: use combinatorics on a 
Weyl group to calculate some geometric invariants, 
relate the geometry to representation theory, and 
draw conclusions about irreducible representa-
tions. Lusztig has used this paradigm in an unbe-
lievably wide variety of settings. One striking case 
is that of groups over p​-adic fields. In that setting 
Langlands formulated a conjectural parametriza-
tion of irreducible representations around 1970. 
Deligne refined this conjecture substantially, and 
many more mathematicians have worked on it. 
Lusztig (jointly with Kazhdan) showed how to 
prove the Deligne-Langlands conjecture in an 
enormous family of new cases. This work has 
given new direction to the representation theory 
of p​-adic groups.

There is much more to say: about Lusztig’s work 
on quantum groups, on modular representation 
theory, and on affine Hecke algebras, for instance. 
His work has touched widely separated parts of 
mathematics, reshaping them and knitting them 
together. He has built new bridges to combinator-
ics and algebraic geometry, solving classical prob-
lems in those disciplines and creating exciting new 
ones. This is a remarkable career and as exciting to 
watch today as it was at the beginning more than 
thirty years ago.

George Lusztig
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Biographical Sketch
George Lusztig was born in Timisoara, Romania, 
in 1946. After graduating from the University 
of Bucharest in 1968, he was an assistant at the 
University of Timisoara and then a member of the 
Institute for Advanced Study in Princeton, where 
he studied with Michael Atiyah. During his sec-
ond year at IAS he was also a graduate student at 
Princeton University and received a Ph.D. degree 
(1971) for work on Novikov’s higher signature 
and families of elliptic operators. He then moved 
to the University of Warwick, U.K., becoming a 
professor in 1974. For the last thirty years he has 
been a professor at the Massachusetts Institute of 
Technology. He has been a frequent visitor to the 
IHÉS (Institut des Hautes Études Scientifiques) and 
spent the academic year 1985–86 at the Univer-
sity of Rome. Lusztig received the Berwick Prize 
(London Mathematical Society, 1977), the Cole 
Prize in Algebra (American Mathematical Society, 
1985), and the Brouwer Medal (Dutch Mathematical 
Society, 1999). He is a fellow of the Royal Society 
of London, a fellow of the American Academy of 
Arts and Sciences, and a member of the National 
Academy of Sciences.
Response
When writing a response it is very difficult to say 
something that has not been said before. There-
fore, I thought that I might give some quotes from 
responses of previous Steele Prize recipients which 
very accurately describe my sentiments.

“What a pleasant surprise!” (Y. Katznelson, 
2002). “I feel honored and pleased to receive 
the Steele prize—with a small nuance, that it is 
awarded for work done up to now” (D. Sullivan, 
2006). “I always thought this prize was for an old 
person, certainly someone older than I, and so it 
was a surprise to me, if a pleasant one, to learn that 
I was chosen a recipient” (G. Shimura, 1996). “But 
if ideas tumble out in such a profusion, then why 
aren’t they here now when I need them to write this 
little acceptance?” (J. H. Conway, 2000).

Now, I thank the Steele Prize Committee for se-
lecting me for this prize. It is an unexpected honor, 
and I am delighted to accept it. I am indebted to 
my teachers, collaborators, colleagues at MIT, and 
students for their encouragement and inspiration 
over the years.

Around the time of my Ph.D., I switched from 
being a topologist with a strong interest in Lie 
theory to being a representation theorist with a 
strong interest in topology. (The switch happened 
with some coaching by Michael Atiyah and later 
by Roger Carter.) After that most of my research 
was concerned with the study of representations 
of Chevalley groups over a finite field or used 
the experience I gained from groups over a finite 
field to explore neighboring areas such as p​-adic 
groups (which can be viewed as groups over a finite 
field that are infinite dimensional) or quantum 

groups (which can be viewed as analogues of the 
Iwahori-Hecke algebras, familiar from the finite 
group case).

Here are three topics from my research which I 
am particularly fond of:

(i) the classification of complex irreducible repre-
sentations of a finite Chevalley group;

(ii) the theory of character sheaves, which helps in 
computing the irreducible characters in (i);

(iii) the theory of canonical bases arising from 
quantum groups, which unexpectedly provides a 
very rigid structure with coefficients in the natural 
numbers for several of the known objects in Lie 
theory.

I would like to make some comments on the 
period in which I focused on topic (i) above, from 
late 1975 (when my paper with Deligne (DL) was 
just completed) to the spring of 1978. In the first 
few months of that period I worked on the “Cox-
eter paper” (CP), in which I studied in detail the 
cohomology with compact support of the variety 
attached in (DL) to a Coxeter element in the Weyl 
group. Luckily, in this case the eigenvalues of 
Frobenius could be explicitly computed, and the 
eigenspaces provided a complete decomposition 
into irreducible representations, giving several new 
key examples of cuspidal representations. Then 
during the next year I found the classification and 
degrees of the irreducible representations of clas-
sical groups over a finite field using an extension 
of the method of (DL). After this (in 1977), as I 
wrote the notes for my lectures in the CBMS Re-
gional Conference Series, No. 39, I found the clas-
sification and degrees of the irreducible unipotent 
representations of the finite exceptional groups 
of type other than E8​, based on (DL) and (CP). To-
wards the end of 1977 I discovered the nonabelian 
Fourier transform attached to any finite group H​ 
(which in the case where H​ is abelian reduces to 
the ordinary Fourier transform for functions on 
H​ times its dual). This new Fourier transform al-
lowed me to find (in the spring of 1978) the clas-
sification and degrees of the irreducible unipotent 
representations for E8​. The same (or somewhat 
easier) methods can be used to obtain the classi-
fication and degrees of nonunipotent irreducible 
representations of finite exceptional groups. Thus, 
contrary to what the citation says, the classification 
of irreducible representations of finite exceptional 
groups does not depend on the “geometry of the 
unipotent cone” or on my work with Kazhdan done 
in 1979 (KL). On the other hand, the latter (KL) did 
play a role in my work (1981, 1982) on computing 
the values of irreducible characters on semisimple 
elements, and the former played a role in my work 
(1983–1986) on character sheaves. Moreover, the 
use of (KL) simplifies some of the arguments in the 
classification, as I showed in my 1984 book.


